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Outline

Mixed Model (MM): Longitudinal and Multi-level Data
« Common Hypothesis Tests in the Linear MM

« Reversibility: Linear MM as General Linear Multivariate Model
(GLMM)

 Power and Sample Size for GLMM
 Goal: Power and Sample Size for Fixed Effects in the Linear MM
* Missing Data

« Summary, Segue to Software Solution: GLIMMPSE
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Prof. Frank Graybill’s Legacy

« Exemplary data approach
= Noncentral F approx.
for power in mixed model
(O'Brien and Muller, 1993)

e Based on earlier ideas of
Graybill (1976)

« Later generalized to
multivariate case by Muller
and Peterson (1984)
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Mixed Models Commonly Used for
Longitudinal and Multi-level data

* Linear MM: Laird and Ware, 1982; Demidenko, 2004,
Muller and Stewart, 2007
* Nonlinear MM: Lindstrom and Bates, 1980
« Longitudinal/prospective studies - designed
- Randomized clinical trials, individuals
- Cluster randomized studies
« Longitudinal/prospective studies - observational
- Cohort studies, natural history
« Multi-level - designed
- Cluster randomized studies
« Multi-level - observational
- Clustered +/- longitudinal
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General Linear Mixed Model Formulation -
Muller and Stewart (2007)

X8 + Zd; +e; With Gaussian errors indicates
X8 + ey

fixed +- random d; 0 () O
T T e; o NmAp 0|’ 0 Zez’('re)

E(yi) V(yi)
model model

Yi

Population average version combines the randomness:
Yy, = X0 + ey,
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Power for the Most Common

Hypothesis Tests for the Linear
Mixed Model

A) Power for testing fixed effects (means)
B) Power for testing random effects (covariance)
C) Power for testing fixed and random effects

General and accurate power and sample size methodology
IS not available.

There are, however, good methods for most of class A.
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Power and Sample Size for Fixed
Effects in the Linear Mixed Model

« Key idea: Some LMM can be recast as GLMM

* Which ones?
— No missing data and no mistimed data
— Unstructured covariance model across responses (a robust,
safe, conservative assumption)
— Typical clinical trial or longitudinal study in which main inference
IS about time by treatment interaction

 Why do we care?
— Muller, et al (1992) show how to do power for time by treatment
using GLMM framework!

Colorado School of Public



Reversibility: The Linear Mixed Model
as a General Linear Multivariate Model

* A General Linear Multivariate Model (GLMM) has rows

(subjects) and columns (repeated measures or multiple
outcomes): Y = XB+ E

« Equations 12.1-12.7 in Muller and Stewart (2007) allow
seeing the LMM as a stacked (by subject) GLMM
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Reversibility: Six Steps from
a GLMM to a LMM

vec(Y”)
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1.

3.

Stack GLMM by
Independent Sampling
Unit (ISU)

Distribute vec operator

Summarize common
Design Matrix across the
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Reversibility: Six Steps from

a GLMM to a LMM, cont’d

Y

— (XM ® Ip)

LB,

v dy, xaady -
ryody xaroody,
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Y = (X ® I))vec(B') + E;
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. Distribute vec operator

on B

. Expand Kronecker

Design feature

. Recognize equation for

a single ISU as a
general LMM




Reversibility: Stated Simply

Two equivalent representations for the regression equation
for subject i

Y = (X, ® I,)vec(B') + E; Stacked Multivariate Model
&

Yi = XniB + ey Population Average
Mixed Model

where X, ® I, = X,,; and vec(B') = 3
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Conditions for Reversibility

* As a special case of a LMM, the defining characteristics of a
GLMM are “Kronecker design” and “Kronecker covariance.”

 Kronecker design requires a common design matrix for all
response variables (columns of Y, which may be repeated
measures).

 Kronecker covariance requires a common covariance matrix
for all independent sampling units (rows of Y, which may be
persons).

* Need to keep track of:
— What's an ISU (often person) and what’s an observation
— Between ISU factors vs. within ISU factors
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GLMM = LMM: Start with GLMM
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GLMM = LMM: Steps 1 - 3
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GLMM = LMM: Steps 5 and 6
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Power and Sample Size for Fixed
Effects In a Linear Mixed Model

To be reversible to a GLMM, a mixed model must:

« Have a Balanced Design within ISU; no repeated
covariates; saturated between-within

« Have an Unstructured Covariance Model
 Use Wald test for inference about Fixed Effects

« Use Kenward-Rogers df approximation for Wald tests
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Power and Sample Size for GLMM

« Muller, LaVange, Ramey and Ramey (1992)

« Multivariate approach to repeated measures and
MANOVA, “multivariate”: MULTIREP uses 1 of 4 test
statistics: HLT, WLK, PBT, RLR

« “Univariate” approach to repeated measures, UNIREP
uses 1 of 4 test statistics: UN, HF, GG, Box (Muller,
Edwards, Simpson Taylor, 2007)

18
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Examples of Common Fixed Effects
Hypothesis Tests for the LMM

* Pure between-group comparisons - actually univariate
analysis and power, so skipped here

« Treatment by Time Interaction examples:

— Parkinson’s Disease Progression and Exercise; 3
Intervention groups at baseline, 4 10, 16 months
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Unbalanced Designs - Missing Data

« Catellier and Muller (2000) conducted extensive simulations
evaluating impact of missing data on 3 MULTIREP tests and 4
UNIREP tests based on unstructured covariance model and ML
estimation

 Results: HLT requires aggressive sample size adjustment to
approximately control Type | error rate: replace N with Nx = minimum
number of non-missing pairs

 Recall that Reversible LMM + Wald test + KR correction + no
missing or mistimed data < HLT in GLMM

« Implication: Tells us how to adjust sample size for power with

missing data
20
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Ongoing Work on Missing Data

 Work in progress: Formula for expected value of N.

« Some crude approximations useful for the consulting
setting:
— Complete data power is an upper bound

— Power for N = (100% - % missing) x # ISUs appears
conservative, requires assuming MAR

 Attrition model is the next target

21
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Summary

« Under widely applicable restrictions a LMM can be expressed
as a GLMM, i.e. a LMM is reversible.

« Power and sample size for both univariate and multivariate
repeated measures tests for the GLMM provide exact or very
good approximations for corresponding LMM fixed effect
tests.

« Straightforward adjustments can be made for missing data as
long as MAR holds.

 Bonus: FREE software is available soon to implement the
methods - GLIMMPSE - next! 22
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