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IV. Bias in Estimated Chance of Success
Due to Truncation
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I. MOTIVATING EXAMPLE

The  question: BIG Why do so many successful
phase IIs lead to disappointing phase IIIs?

Many factors.
Three problems we can help solve:
1)  between sample sizeMisalignment
    calculation and study objectives.
2)  in the variance value used forUncertainty
    planning.
3)  due to proceeding only after aBias
    significant result.
Focus here on power and power generalization
for studies including Confidence Intervals (CIs).
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Sample size goals include:
Width ( ): CI is as narrow as desired[
Validity ( ):  CI contains true unknownZ
        parameter
Rejection ( ): of the null hypothesisV

Example: Pisano, et al. (2002)  study:screening
Radiologists read mammograms on film
(hardcopy) and computer screen (softcopy).
Is softcopy read faster or slower than hardcopy?
Screening study results suggestive, would like
to conduct  study.target
Choose sample size ith CIfor target study w
endpoint.
Board certified radiologists are busy, expensive.
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II. ALIGNING SAMPLE SIZE RULE WITH

STUDY GOALS
For Pisano, et al. example:
Use screening data to plan target study.

Increase reading time of % acceptable&#&
Í œ !Þ"#&log"! scale CI width of .$

Test   of difference.L À L À !! +) )œ ! Ávs. 
) $ !œ Î# œ !Þ!'#& œ !Þ!&;   .
5s œ#
= 0.012. For now, assume it's population

value.
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Figure 1. Pre f[lZ  curve for target study.

  Ê 8 œ0.90 target probability 20
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Figure 2. Pre fV  curve for target study.

Pre fV Í unconditional power
  Ê 8 œ0.90 power 35
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Figure 3. Pre fa b[ 8V lZ curve for target study.

  Ê 8 œ0.90 target probability 33
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Figure 4. Pre fa b[ 8V lZ : solid line, Pre fV : dashed line
and  curves for target study.Pre f[lZ : dotted line

Relative size of CI width to test parameter most
important.
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Different examples than Pisano, et al. (2002);
see Jiroutek (et al., 2003):
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Figure 5.  Event probabilities as a function of  with8  log  spacing,#

// œ < < ÞR œ " œ ! œ !Þ!&,  < œ #, 5 ) !#
!,  and Pr˜ ™a b¸[ 8V Z :

solid line; ; .Pre fV : dashed line Pr˜ ™¸[ Z : dotted line

Note: : parameter of interest) ) ). !œ <
    $ : CI width
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Alignment Conclusions

• Jiroutek, et al. concluded Pr˜ ™a b¸[ 8V Z

best aligned sample size with scientific goals.
• New exact small sample results apply to any
scalar parameter in General Linear Multivariate
Models (GLMM). Includes
 one and two sample -tests< >
  paired-data -test< >
 planned scalar contrasts in univariate,<
     multivariate or REPM ANOVA
• Unconditional power  andÍ VPre f
Pr Pr˜ ™ ˜ ™¸ ¸a b[ Z [ 8V Zare special cases of .
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III. UNCERTAINTY IN CHANCE OF

SUCCESS DUE TO ESTIMATING
VARIANCE

Refer to target probability  (e.g., power,T> as ,
Pr Pr˜ ™ ˜ ™¸ ¸a b[ Z [ 8V Z, ).

Ignored in previous results: Variance estimate
from screening study used.
How to account for using  in place of ?5 5s# #

Type I & II error rates, scientifically important
difference, and CI width all specified.
How is  obtained?5s#

 • Guess
 • Limited by financial, temporal or other 
        constraints
 • Prior dataBest/most frequent case:  
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Use of ) 5 5s# # (not from pilot study, other study,
literature random not fixed.Ê

T> inherits randomness.
Suggests use of confidence bounds for  curve.T>

T> a smooth, strictly monotone, 1-to-1 function
of exact CI follows from exact CI for .5 5# #Ê

Compute .ˆ ‰5 5s sß=P =Y
# #

Replace  in 5s=
# T> calculation.

Compute .Š ‹T ß Ts s
>P >Y
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Pisano, et al. (2002) study (variation, ):larger $

Figure 6. 95% confidence region (dots) for Pre fa b[ 8V lZ> > >

(solid) based on 8.5 )s œ !Þ!"#à œ !Þ!'#&à 8 œ#
= =$ $= >œ œ " &à.

Wide bands due to small .8=

Confidence region for power (GLUM): Taylor
& Muller (1995). Extended to inPr˜ ™a b¸[8V Z

GLMM by Jiroutek & Muller (2004, in review).
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Uncertainty Conclusions

• Screening study sample size more important
than target study sample size!
• We believe this explains an important fraction
of failures in replicating studies.
• New exact small sample results apply to any
scalar parameter in GLMM.
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IV. BIAS IN ESTIMATED CHANCE OF

SUCCESS DUE TO TRUNCATION
Ignored in previous results: Target study
conducted only if screening study successful.
Same in drug discovery process: Ph II (III) trial
occurs only after  Ph I (II) result.significant
Studies with small  by chance more likely5s#

successful.
Only early studies with sufficiently small
variability will lead to later phase studies.
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0ÐBÑ ‚ "!<&

;!
#  values

Figure 7. Example distribution of ( , eight )5s Þ=
# ;!

# df



18
0ÐBÑ ‚ "!<&

;!
#  values

Figure 8. Example distribution of ( , eight ) with5s=
# ;!

# df
truncation point, highlighting failure regionÞ
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0ÐBÑ ‚ "!<&

;!
#  values

Figure 9. Example distribution of ( , eight ) with5s=
# ;!

# df
truncation point, highlighting success regionÞ
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0ÐBÑ ‚ "!<&

;!
#  values

Figure 10. Example of “success truncated” distribution of 5s=
#

( , eight );!
# df Þ

Distribution of sufficiently small  different5s#

than that of all .5s#
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“Success truncation” describes this effect on
PDF (CDF) of .5s=

#

Under normality,  a truncated, scaled .5 ;s=
# #

Truncation occurs as a result of observing only
5s=
# that achieve pre-specified criteria.

Muller & Pasour (1997) derived exact expression
for truncated CDF of  for power.5s=

#

Jiroutek and Muller (2004, in review) extended
to Pr˜ ™a b¸[ 8V Z , while considering better
aligned truncation.
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Impact on ?T>

For power, success truncation occurs when
screening study hypothesis test significant.
For success truncation occursPr˜ ™a b¸[ 8V Z , 
when screening study hypothesis test significant
and CI width achieved.
Estimated  computed with T> 5s=

# (truncated or
not).
Exact CI for estimated probability criterion
based on truncated 5 5s s= =

# #: replace untruncated 
bounds values.with appropriate truncated 
Remaining inputs fixed constants, may or may
not coincide with screening study values.
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Recall,  for variation of Pisano, et al.Figure 6
(2002) study:

Figure 11. 95% confidence region (dots) for Pre fa b[ 8V lZ> > >

(solid) based on ;   8.5 "s œ !Þ!"# œ !Þ!'#&à à 8 œ#
= =$ $= >œ œ " &.
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If Pisano, et al. screening study significant:

Figure 12. 95%  and success truncation (dashes) no-truncation (dots)
confidence regions for  based on Pre fa b[ 8V lZ> > > (solid) 5s œ !Þ!"#à#

=

" œ !Þ!'#&à à 8 œ Þ  8$ $= >œ œ " &. =

Bias occurs if success truncation ignored Ê
optimistic bias and sample size too small.
Wide bands due to small .8=
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Bias Conclusions

• New exact small sample results account for
success truncation in analysis of any scalar
parameter in GLMM.
• Ignoring success truncation causes optimistic
bias when computing sample size.
• Correcting sample size eliminates bias, should
lead to more successes.
• We believe this explains another important
fraction of failures in replicating studies.
• In non-GLMM, if using (asymptotically)
Gaussian test, above results may apply.
• “failure truncation” creates pessimistic bias
and sample size too big.
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V. EXTENSIONS

Work in progress:
User-friendly freeware for Pr˜ ™a b¸[ 8V Z

(Figure 5). Uncertainty, bias extensions to follow.
Internal Pilot Designs (interim power analysis).

Important unanswered questions:
Group sequential designs.
Binomial data. More complex due to
dependence between mean and variance.
Exponential data.



27
REFERENCES

Beal, S. L. (1989) Sample size determination for confidence intervals on the population mean and on the difference
between two population means, , , 969-977.Biometrics 45

Bristol, D. R. (1989) Sample sizes for constructing confidence intervals and testing hypotheses, , ,Statistics in Medicine 8
803-811.

Coffey CS, Muller KE. Properties of doubly-truncated gamma variables. Communications in Statistics - Theory &
Methods 2000; :851-857.29

Gatsonis, C. and Sampson, A. R. (1989) Multiple correlation: exact power and sample size calculations, Psychological
Bulletin, (3), 516-524.106

Glueck, D. H. (1995) Power for a generalization of the GLMM with fixed and random predictors, Ph.D. dissertation,
Department of Biostatistics, University of North Carolina, Chapel Hill.

Grieve, A. P. (1991) Confidence intervals and sample sizes, , , 1597-1603.Biometrics 47

Hsu, J. C. (1989). Sample size computation for designing multiple comparison experiments. Computational Statistics &
Data Analysis , 79-91.7

Jiroutek, M. R., Muller, K. E., Kupper, L. L. and Stewart, P. W. (2003). A new method for choosing sample size for
confidence interval based statistical inferences, Biometrics 59, 580-590.

Jiroutek, M. R. and Muller, K. E. (2004). Uncertainty and bias in sample size due to estimating variance when using
confidence interval criteria, in review.

Kupper, L. L. and Hafner, K. B. (1989) How appropriate are popular sample size formulas?, , (2),American Statistician 43
101-105.

Lehmann, E. L. (1959) Testing Statistical Hypotheses. Wiley; New York.

Lenth, R. V. (2001). Some practical guidelines for effective sample size determination.  ,The American Statistician 55
187-193.

Leventhal, L. and Huynh, C. (1996). Directional decisions for two-tailed tests: power, error rates, and sample size.
Psychological Methods (3), 278-292.1

Muller, K. E., LaVange, L. M., Ramey, S. L and Ramey, C. T. (1992) Power calculations for general linear multivariate
models including repeated measures applications, , (420), 1209-Journal of the American Statistical Association 87
1226.

Muller, K. E. and Pasour, V. B. (1997). Bias in linear model power and sample size due to estimating variance.
Communications in Statistics - Theory & Methods (4), 839-851.26

Pisano, E. D., Cole, E. B., Kistner, E. O., Muller, K. E., Hemminger, B. M., Brown, M., Johnston, R. E., Kuzmiak, C.,
Braeuning, M. P., Freimanis, R., Soo, M. S., Baker, J. and Walsh, R. (2002). Interpretation of digital mammograms:
a comparison of speed and accuracy of softcopy versus printed film display.  , 483-488.Radiology 223

Sampson, A. R. (1974) A tale of two regressions, , (347), 682-689.Journal of the American Statistical Association 69

Taylor, D. J. and Muller, K. E. (1995). Computing confidence bounds for power and sample size of the general linear
univariate model. (1), 43-47.American Statistician 49

Taylor, D. J. and Muller, K. E. (1996). Bias in linear model power and sample size calculation due to estimating
noncentrality.  , 1595-1610.Communications in Statistics: Theory & Methods 25


