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|.MOTIVATING EXAMPLE

The Bl G question: Why do so many successful
phase |Is |ead to disappointing phase 111s?

Many factors.
Three problems we can help solve:

1) Misalignment between sample size
calculation and study objectives.

2) Uncertainty in the variance value used for
planning.

3) Bias due to proceeding only after a
significant result.

Focus here on power and power generalization
for studies including Confidence Intervals (Cls).



Sample size goals include:

Width (W):  Cl isasnarrow as desired
Validity (V). CI contains true unknown
parameter

Reection (R): of the null hypothesis

Example: Pisano, et al. (2002) screening study:

Radiologists read mammograms on film
(hardcopy) and computer screen (softcopy).

|s softcopy read faster or slower than hardcopy?

Screening study results suggestive, would like
to conduct target study.

Choose sample size for target study with Cl
endpoint.

Board certified radiologists are busy, expensive.
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II. ALIGNING SAMPLE SIZE RULE WITH
STUDY GOALS

For Pisano, et al. example:
Use screening data to plan target study.

Increase reading time of < 25% acceptable
< logyo scale Cl width of 6 = 0.125.

Test Hy : 6 =0vs. H, : 0 +# 0 of difference.
0=06/2=0.0625; a=0.05.

52 = 0.012. For now, assume it's population
value.
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Figure 1. Pr{IV/ |V } curvefor target study.

> 0.90 target probability = n = 20
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Figure2. Pr{ R} curvefor target study.

Pr{R} < unconditional power
> 0.90 power = n = 35
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Figure3.Pr{(W N R)|V } curvefor target study.

> 0.90 target probability = n = 33



Total sample size

Figured. Pr{(W N R)|V }: solid line, Pr{ R}: dashed line
and Pr{1//|V/}: dotted line curves for target study.

Relative size of Cl width to test parameter most
mportant.
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Different examples than Pisano, et al. (2002);
see Jiroutek (et al., 2003):
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Figure 5. Event probabilities as a function of n with log, spacing,
ve=N—-r,r=2,02=1,0)=0anda = 0.05. Pr{ (W N R)|V }:
solid line; Pr{R}: dashed line; Pr{ 17|V }: dotted line.

Note: 0, = 0 — 6. parameter of interest
6 . Cl width
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Alignment Conclusions

« Jiroutek, et al. concluded Pr{(W N R)|V'}
best aligned sample size with scientific goals.

* New exact small sample results apply to any
scalar parameter in General Linear Multivariate
Models (GLMM). Includes

— one and two sample ¢-tests

— paired-data t-test

— planned scalar contrasts in univariate,
multivariate or REPM ANOVA

 Unconditional power < Pr{R} and
Pr{W |V } are special cases of Pr{(W N R)|V'}.
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[I1. UNCERTAINTY IN CHANCE OF
SUCCESSDUE TO ESTIMATING
VARIANCE

Refer to P, astarget probability, (e.g., power,
Pr{W |V}, Pr{(WNR)|V}).

Ilgnored in previous results. Variance estimate
from screening study used.

How to account for using 3 in place of ¢2?

Typel & 1 error rates, scientifically important
difference, and Cl width all specified.

How is &2 obtained?

e Guess

 Limited by financial, temporal or other
constraints

» Best/most frequent case: Prior data
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Use of 3* (not ¢2) from pilot study, other study,
literature = random not fixed.

P, inherits randomness.
Suggests use of confidence bounds for P; curve.

P, asmooth, strictly monotone, 1-to-1 function
of o2 = exact Cl follows from exact Cl for o>

Compute (57;,55).

Replace 5 In Pt calculation.

(5
7,
Compute ( )
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Pisano, et al. (2002) study (variation, larger 6):
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for Pr{(W; N R;)|V;}

(solid) based on 5% = 0.012; 6 = 0.0625; 8, = &; = 1.5;n, = 8.

Wide bands due to small n,.

Confidence region for power (GLUM): Taylor
& Muller (1995). ExtendedtoPr{(WNR)|V } in

GLMM by Jiroutek & Muller (2004, in review).



15

Uncertainty Conclusions

» Screening study sample size more important
than target study sample size!

* We believe this explains an important fraction
of falluresin replicating studies.

* New exact small sample results apply to any
scalar parameter in GLMM.
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V. BIASIN ESTIMATED CHANCE OF
SUCCESSDUE TO TRUNCATION

Ignored in previous results: Target study
conducted only if screening study successful.

Same in drug discovery process. Ph Il (111) trial
occurs only after significant Ph | (11) result.

Studies with small 5% by chance more likely
successful.

Only early studies with sufficiently small
variability will lead to later phase studies.
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Figure 7. Example distribution of 52 (x2, eight df).
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Figure 8. Example distribution of 2 (x?2, eight df) with
truncation point, highlighting failure region.
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Distribution of sufficiently small 5° different

than that of all 5°.
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“Success truncation” describes this effect on
PDF (CDF) of 5=.

Under normality, 52 atruncated, scaled 2.

Truncation occurs as a result of observing only
52 that achieve pre-specified criteria.

Muller & Pasour (1997) derived exact expression
for truncated CDF of G2 for power.

Jiroutek and Muller (2004, in review) extended
to Pr{ (W N R)|V'}, while considering better
aligned truncation.
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| mpact on P;?

For power, success truncation occurs when
screening study hypothesis test significant.
For Pr{(W N R)|V }, success truncation occurs

when screening study hypothesis test significant
and Cl width achieved.

Estimated P, computed with 52 (truncated or
not).

Exact CI for estimated probability criterion
based on truncated 2: replace untruncated 62
bounds with appropriate truncated val ues.

Remaining inputs fixed constants, may or may
not coincide with screening study values.
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Recall, Figure 6 for variation of Pisano, et al.
(2002) study:
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Figure11. for Pr{(W; N R;)|V;}
(solid) based on 5% = 0.012; § = 0.0625; 8, = 6, = 1.5; n, = 8.
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If Pisano, et al. screening study significant:
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Figure 12. 95% and
confidence regions for Pr{ (17, N R;)|V;} (solid) based on 52 = 0.012;
6 =0.0625; 6 = 6; = 1.5; n, = 8.

Bias occurs if successtruncation ignored =
optimistic bias and sample size too small.

Wide bands due to small ..
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Bias Conclusions

* New exact small sample results account for
success truncation in analysis of any scalar
parameter in GLMM.

e |gnoring success truncation causes optimistic
bias when computing sample size.

 Correcting sample size eliminates bias, should
|lead to more successes.

» \We believe this explains another important
fraction of failuresin replicating studies.

* In non-GLMM, if using (asymptotically)
Gaussian test, above results may apply.

o “failure truncation” creates pessimistic bias
and sample size too big.
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V. EXTENSIONS

Work in progress:

User-friendly freeware for Pr{(W N R)|V'}
(Figure5). Uncertainty, biasextensionsto follow.

Internal Pilot Designs (interim power analysis).

|mportant unanswered questions:
Group sequential designs.

Binomial data. More complex dueto
dependence between mean and variance.

Exponential data.
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