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« Behavioral scientists have always needed to select
sample size for repeated measures, or multivariate
data, and now multilevel structure.

 We think the ideas and software we present today
make the job easier than ever before.

* The first version of free power software was written 30
years ago.

 Previous versions matrix based, user hostile.
Now point and click (GUI).
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Agenda for Skill Building Session
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 10:05-10:45 AM

Power and Sample Size for the Most Common
Hypotheses in Mixed Models — A. Baron

10:45-10:50 Questions

10:55-11:35 AM
Mixed Model Power Analysis By Example: Using
Free Web-Based Power Software — S. Kreidler

11:35-11:40 Questions

11:40-11:50 Discussion
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 Mixed Model (MM): Clustered and Repeated Measures Data

— Common Hypothesis Tests in the Linear MM (LMM)

— The LMM as a General Linear Multivariate Model

e (Going with the Flow (Diagram)
— Two Real World Examples

— Towards a Simple and Valid Power or Sample Size Analysis
e Missing Data

o Summary and Segue to Software Solution: GLIMMPSE
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Presenter
Presentation Notes
In the first part of my talk I’ll describe briefly the study designs in which we encounter MM and the specific features of clustering and repeated measures that are the hallmarks of multi-level designs which can be analyzed using MM
For the middle part of my talk I’ll use two behavioral science examples to anchor the discussion of how we solve for power and sample size. I’ll proceed sequentially through a process that we think is both straightforward and useful with regard to power and sample size analysis.  

I’ll talk briefly about the issue of missing data in this context and then I’ll end with a summary of my key points and transition the focus to the free, web-based software that our team has developed to implement these ideas and methods.   
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« Mixed Model (MM): Clustered and Repeated Measures Data

— Common Hypothesis Tests in the Linear MM (LMM)

— The LMM as a General Linear Multivariate Model
e Going with the Flow (Diagram)

— Two Real World Examples

— Towards a Simple and Valid Power or Sample Size Analysis
e Missing Data
« Summary and Segue to Software Solution: GLIMMPSE
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LMM Commonly Used for Clustered and

Repeated Measures Data

 Linear MM: Laird and Ware, 1982; Demidenko, 2004,
Muller and Stewart, 2007
« Studies with Clustering
- Designed: Cluster randomized studies
- Observational: Clustered observations
o Studies with Repeated Measures (RM)
- Designed: Randomized clinical trials
- Observational: Cohort studies, natural history
 Combination
- Cluster randomized longitudinal studies
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Presenter
Presentation Notes
Ability to model unbalanced longit and clustered data has been with us for roughly 30 years thanks to the work of Nan Laird and Jim Ware
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Data Structures

Clustering
<~ Restricted Multi-level

Repeated Measures
< Restricted Longitudinal
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®
Clustering — Level 1

Clusters: Communities as
Independent Sampling Units (ISU)

/— Independent \
\ Sampling /

Units
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Presenter
Presentation Notes
ISU: Determined by Science
Observational unit – contained within ISU
Study of adolescent drinking behavior   


Clustering: Additional Levels

Community
Level 1

School

Level 2

A

Classroom
Level 3

Classroom
Level 3

A

A
h 4
A
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Social Clique
Level 4

UF
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School
Level 2

Classroom
Level 3
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Presenter
Presentation Notes
Community level intervention to prevent adolescent drinking behavior  


APR
ANNUAL
COMNVENTION

ALKGUST 2-5 2012

Repeated Measures

CRLAMDO), FUORIDA

Spaghetti Plot of Pain Perception by Intervention Group vs. Time
GEP = Control GEP = Intervention
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Presenter
Presentation Notes
Pain Perception, Long-term Memory of Pain  
Audio Intervention involving sensory focus 
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— Common Hypothesis Tests in the Linear MM (LMM)
— The LMM as a General Linear Multivariate Model

e Going with the Flow (Diagram)
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Power for the Most Common Hypothesis
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Tests for the Linear Mixed Model

v' A) Power for testing fixed effects (means)
X B) Power for testing random effects (covariance)
X C) Power for testing fixed and random effects

General and accurate power and sample size
methodology is not available.

There are, however, good methods for most of class A.
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Presenter
Presentation Notes
Fixed Effects could be grand means, treatment effects (differences between or among groups), trends, interactions between fixed effects and time by treatment interactions
Random effects – random intercepts, slopes
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 Mixed Model (MM): Clustered and Repeated Measures Data

— Common Hypothesis Tests in the Linear MM (LMM)

— The LMM as a General Linear Multivariate Model
e Going with the Flow (Diagram)

— Two Real World Examples

— Towards a Simple and Valid Power or Sample Size Analysis
e Missing Data

« Summary and Segue to Software Solution: GLIMMPSE
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Power and Sample Size for Fixed Effects

In the Linear Mixed Model

Key idea: Some LMM can be recast as a General Linear
Multivariate Model

e Which ones?

— No missing data and no mistimed data

— Unstructured covariance model across responses (a
robust, safe, conservative assumption)

— Typical clinical trial or longitudinal study in which main
Inference is about time by treatment interaction

 Why do we care?

— Muller, et al. (1992) show how to do power for time by
treatment using GLMM framework!
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Four Specific Requirements for a LMM o

COMNVENTION

to be Recast as a GLMM - 1. B

To be reversible to a General Linear Multivariate Model, a
LMM must:

1. Have a Balanced Design within ISU; no repeated
covariates; saturated with regard to between-
within effects

= No missing or mistimed data
= Unequal group sizes ok
* Treatment assignment does not change over time

= Factorial design including Interaction between

Treatment (between) and Time (within)
18
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Four Specific Requirements for a LMM o

COMNVENTION

to be Recast as a GLMM - 2. Aov3s 300,

To be reversible to a General Linear Multivariate Model,
a LMM must;:

2. Have an Unstructured Covariance Model

= All variances and covariances unspecified, i.e.
they do not follow a pattern or rule

19
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Presenter
Presentation Notes
Balanced within ISU = no missing or mistimed data; __________
No Repeated Covariates = e.g. Treatment assignment cannot change over time
Saturated with regard to Between-Within effects = factorial design including interaction terms between treatment and time
Unstructured Covariance = 
Wald Test = most commonly used test in LMM analysis, implemented in all packages – SAS, SPSS etc.
KR approach – df approx + under reversibility covariance matrix is _______ and the Wald Test is the same as Hotelling Lawley Trace Test 


Four Specific Requirements for a LMM o

COMNVENTION

to be Recast as a GLMM - 3. okt R

To be reversible to a General Linear Multivariate Model,
a LMM must:

3. Use Wald test for inference about Fixed Effects

= Most common test used for LMM analysis by
standard packages

20
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Four Specific Requirements for a LMM o

COMNVENTION

to be Recast as a GLMM — 4. Aov3s 300,

To be reversible to a General Linear Multivariate Model,
a LMM must:
4. Use Kenward-Rogers df approach

* DF approximation method with modified
covariance matrix

= Under reversibility, covariance matrix is
unstructured and test is equivalent to Hotelling-
Lawley Trace test

= Muller et al. (2007) showed it’s the best test

21
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Power and Sample Size for GLMM
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« Muller, LaVange, Ramey and Ramey (1992)

e Multivariate approach to repeated measures and
MANOVA: Hotelling-Lawley Trace

 Kenward-Rogers Wald Test equivalent when LMM is
reversible
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 Mixed Model (MM): Clustered and Repeated Measures Data

— Common Hypothesis Tests in the Linear MM (LMM)

— The LMM as a General Linear Multivariate Model
 Going with the Flow (Diagram)

— Two Real World Examples

— Towards a Simple and Valid Power or Sample Size Analysis
e Missing Data
« Summary and Segue to Software Solution: GLIMMPSE
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First of Two Examples

e Stress Inoculation Training (SIT) Trial: Sample
size for proposed repeated measures study
comparing sensory focus intervention vs. placebo
with regard to long-term memory of dental pain (Law

et al., 1994)
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Presenter
Presentation Notes
Intervention: 1-minute audio instruction to pay attention only to physical sensations during root canal therapy
Placebo: Filler audio tape to control for media and attention effects
Scale: 0 = no pain remembered, 5 = maximum pain remembered 


APR

The SIT Trial: Repeated Measures
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Month O Month 6 Month 12
Treatment Data Data Data

Randomize
Participant

Placebo Month O Month 6 Month 12
Data Data Data
25
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Presenter
Presentation Notes
Walk through general features emphasizing:
Randomization at individual level – participant is ISU
Balance, no missing or mistimed obs, unequal group sizes ok
No t-v covar – treatment stays constant over time
Unstructured covariance or AR(1) or LEAR?
I’m showing you a slightly simplified design wrt what is proposed. Dr. Kreidler will show you a slight variation on this with an additional predictor variable.
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Second of Two Examples

e Project Northland Chicago (PNC) Trial: Power for
proposed longitudinal cohort study using data from
previous community-randomized controlled trial to
test intervention for adolescents (ages 11-14)
designed to prevent alcohol use (Komro et al., 2007)
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Presenter
Presentation Notes
List of all public schools in Chicago, and selected schools for recruitment that included grades 5 through 8, had relatively low mobility rates (< 25%), and were larger schools (30+ students per grade).  A total of 66 schools (ISU) agreed to participate.

Once the 66 schools were recruited, schools were combined into study units to achieve an average of 200 students per study unit.
Study units were defined by combining geographically close schools within city-defined community areas. Study units were matched on ethnicity, poverty, mobility, and reading and math test scores. Units were then randomized into intervention (n=10 units and 30 schools) or control (n=12 units and 36 schools) conditions.
Assume complete balance: Student within school within unit.
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The PNC Trial: Cluster Randomized Design
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Recruit 22
Communities

Community Community
1 seo e 22

o wr
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Presenter
Presentation Notes
Walk through general features emphasizing:
Cluster randomization – Community is ISU, Schools clustered within Community
School was eventually ignored since not relevant with regard to ICC

Once the 66 schools were recruited, schools were combined into study units to achieve an average of 200 students per study unit.
Study units were defined by combining geographically close schools within city-defined community areas. Study units were matched on ethnicity, poverty, mobility, and reading and math test scores. Units were then randomized into intervention (n=10 units and 30 schools) or control (n=12 units and 36 schools) conditions.
Assume complete balance: Student within school within unit.
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The PNC Trial: Clustering + RM
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6™ Grade Data H 7" Grade Data H 8" Grade Data <

Randomize
Community

D
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Presenter
Presentation Notes
What was the intervention exactly?
Walk through general features emphasizing:
Cluster randomization – Community is ISU, Schools clustered within Community
Balance, no missing or mistimed obs, unequal # clusters between groups ok, equal sample size within cluster
No t-v covar – treatment stays constant over time
Unstructured covar for obs within cluster; Unstructured or AR(1) or LEAR for RM




Towards a Simple and Valid Power or
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Sample Size Analysis — Six Steps (1-3)

 What is the  What is the  What
study sampling responses
design scheme? are
goal? measured?
. W, g W, . W,

29
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Presenter
Presentation Notes
Even though appears as linear process you can choose a number of entry points and sequences. The sequence her follows the logic of the software.

Will now walk through the process step by step using the SIT Trial

Will repeat the entire process after with the PNC Trial 


Towards a Simple and Valid Power or
Sample Size Analysis — Six Steps (4-6)

 What is the
primary
hypothesis
of interest?

e What are
the means?

APR
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e What is the
variance
structure?

30
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Presenter
Presentation Notes
Will now walk through the process step by step using the SIT Trial

Will repeat the entire process after with the PNC Trial 


Step 1. What is the Study Design Goal? e

ALGUST 2-5 2012
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Sample Size

31
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Presenter
Presentation Notes
Decision point might depend on available resources, flexibility … 
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Goal for the SIT Trial

e Determine Sample Size
 Power of 0.9 and o (Type | Error Rate)= 0.01

* Primary Hypothesis: Time trend by Treatment
nteraction

e EXpect the Treated group mean to be 1.2 points
lower iIn Memory of Pain (5-point scale)
compared to the Placebo at the last time
measurement (12 months)

Colorado School of UF gg;}}{}mg;gtcomes & Policy


Presenter
Presentation Notes
Appropriate context: No restrictions on sample size; main concern to have adequate power …
You can try different alphas but may not have a strong influence on sample size
Trend: Any polynomial trend 

This could be difference in slopes at 12 months, or difference in polynomial trajectory



One-sample

Y\

R

R
)

Colorado School of

Multi-sample

)
R

=0 =0
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Presenter
Presentation Notes
Give examples: observational (male/female) or experimentally assigned (treated vs. placebo)
One sample: 1st year college students stress levels at specific university vs. national average
Two-sample: males compared to females
Multi-sample: males compared to females and treated vs. placebo
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Two Samples for the SIT Trial s
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Month O Month 6 Month 12
Data Data Data

Randomize

Participant

Month O Month 6 Month 12
Data Data Data

34
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Step 2b. Specify Study Design Covariates |k

ALGST 2-5 1012
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- Single normally
CONEIEUES distributed predictor?

35
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Presentation Notes
Covariate: Continuous Random Variable, e.g. age, height, weight, stress level
At present software handles one predictor.  May expand to multiple in the future.
Covariates reduce the error.  A common case is controlling for a baseline covariate.  For example, if we measure stress levels over time, we may wish to control for the baseline stress level.
Think about how covariate reduces the variability in the outcomes and reduces bias
SIT: No covariates


Step 2c. Specify Cluster Sampling Scheme |

Clustered?

Number
of Levels

Colorado School of Public Health

COMNVEMTION
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Number of
Observations
per Cluster
within a Level

Intraclass
Correlation
(ICC)
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Presenter
Presentation Notes
Introduce terminology: multilevel vs. clustering vs. hierarchical
Limited to 3 levels
No Clustering in SIT Trial
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Step 2d. Specify Relative Group Sizes e
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Relative Group Sizes

Unequal

37
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Presenter
Presentation Notes
Equal Sample Sizes in the SIT Treatment and Placebo Groups
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Step 3a. Specify Response Variables -

ALGST 2-5 1012
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Variable 1

: Variable 2
Response Variables

Variable k
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Presenter
Presentation Notes
Not limited in the software
SIT Trial: Memory of Pain


Step 3b. Specify Repeated Measures .

ALGST 2-5 1012
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: Time, days,

Numeric,
Repeated7 Type ordinal,
Measures” nominal

Number of
Measurements

39
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Repeated Measures for the SIT Trial
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Month 12
Data
Randomize
Participant
Data Data Data

40
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Presenter
Presentation Notes
SIT Trial: 3 measurements, time scale in months, treated as numeric (quantitative)


Step 4. Specify Primary Hypothesis of Interest | s

ALGST 2-5 1012
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Grand Mean

Main Effect

Hypothesis

Interaction
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Presenter
Presentation Notes
Grand Mean: Overall mean of outcome averaged across fixed factors vs. a hypothesized value
Main Effect ~ Trend – Any diff – One factor – Betw or Within;
Trend: Any polynomial – linear, quad, cubic (individual effects or all together)- Betw or Within
Interaction – 2+ var, any combination of Betw and Within factors ……….; (possible numerical instability with high dimensions)
SIT Trial: Interaction between Time and Treatment


Step 5. Specify Mean Differences -

ANNUAL

Between Groups

DRLAMEDIO, FLORIDA,

By Occasion, if Repeated

Measures

Mean Differences

Apply Scale Factors to
Reflect Uncertainty about
Specified Differences

42
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Mean Differences for the SIT Trial
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SIT Treatment group mean is 1.2 points lower on
Memory of Pain compared to the Placebo group
mean at the last time measurement (12 months).

Consider effect sizes of .5x up to 2x the stated
effect to allow for uncertainty of the input
Information.
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Presenter
Presentation Notes
Difference in slopes or difference in trajectory for any of the possible polynomial fits, here a linear or a quadratic since 3 time points


Step 6. Variance Structure: Multi-level Phun

Model Sources of Correlation 01,

Clustering

Repeated Measures

Multiple Response
Variables

Health Outcomes & Policy

College of Medicine
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Presenter
Presentation Notes
Consider each dimension
Doubly repeated measures: days, hours within days
Doubly multivariate: repeated measures + multiple response variables 
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Common Covariance Pattern
for Clustering

Compound Symmetry

1 p p 1 03 0.3
oc’lp 1 p|=025/03 1 0.3
p p 1 03 03 1
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Presenter
Presentation Notes
What does this look like when there are multiple levels of clustering? Are matrices Kroneckered together?


Commonly Used Covariance Patterns

Appropriate for Repeated Measures

e Unstructured
« AR(1)
* Linear Exponent AR(1) (LEAR)

46
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Presenter
Presentation Notes
AR(1) – delta = 1, very fast decay in correlation over time
LEAR – delta parameter: 0.05 to 0.5 most common decay in real data – much slower decay in correlation over time;  delta = 0 gives CS, delta =1 gives AR(1)


Covariance Patterns for Repeated

Measures — Unstructured

L p
o’lp, 1
P2 Ps

Colorado School of

Unstructured

0, i 1 0.3 0.2
P, [=025/03 1 0.5
1 i _0.2 05 1 .
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Presenter
Presentation Notes
AR(1) – delta = 1, very fast decay in correlation over time
LEAR – delta parameter: 0.05 to 0.5 most common decay in real data – much slower decay in correlation over time


Covariance Patterns for Repeated

Measures — AR(1)

First order autoregressive

1 p p? 1 0.3 0.09
o'l p 1 p|=02503 1 0.3
o° p 1 009 03 1
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Presentation Notes
AR(1) – delta = 1, very fast decay in correlation over time
LEAR – delta parameter: 0.05 to 0.5 most common decay in real data – much slower decay in correlation over time; add’l advantage is that this model will handle unequal spacing??


Covariance Patterns for Repeated
Measures — LEAR

1 p p* 1 0.3 0.16
o'l p 1 p |=02503 1 03
op 1 016 03 1
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Presentation Notes
AR(1) – delta = 1, very fast decay in correlation over time
LEAR – delta parameter: 0.05 to 0.5 most common decay in real data – much slower decay in correlation over time; 


Commonly Used Covariance Patterns

for Multiple Response Variables

e Unstructured observed

e Structure from Structural Equations
Model

e Theoretical framework

Colorado School of UF gg;}}{}mg;gtcomes & Policy



Building Overall Covariance Structure |

ALGST 2-5 1012
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Clustering

Repeated Measures

Multiple Response
Variables
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Presenter
Presentation Notes
Direct product – math rule – way of combining the structures, topic unto itself
Consider each aspect of the covariance separately -
Multiple levels of clustering
+/- Doubly Repeated Measures
+/- Multivariate Responses
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Building Overall Covariance Structure |
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Variance Clusters Repeated Multiple
Measures Responses

L pi il p| .

2 4
o'lp 1 p®p 1 p|® 1

1 1 P4 _

L P 1 P2 Ps _

Clusters of 3 Repeated 2 Response

Size 3 Measures Variables
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Presenter
Presentation Notes
Consider each aspect of the covariance separately -
Clustering – Compound symmetry
RM – unstructured 
Mult Resp – unstructured
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Overall Covariance Model for SIT Trial

—Variance of Memory of Pain = 0.96
— Correlation of responses 6 months apart
= 0.5

— Correlation decays slowly over time,
between 0 and 12 months correlation =
0.4

Colorado School of UF Health Outcomes & Policy

College of Medicine



o’lp, 1 p,|=096/05 1 05
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Example 2 - Power

Alcohol Use Prevention Study

55
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Alcohol Use Prevention Study
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Example for Power
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Recruit 22
Communities

Community Community
1 seo e 22

o ww owr
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Presenter
Presentation Notes
Walk through general features emphasizing:
Cluster randomization – Community is ISU, Schools clustered within Community
School was eventually ignored since not relevant with regard to ICC



Alcohol Use Prevention Study
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Example for Power
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6™ Grade Data H 7" Grade Data H 8" Grade Data <

Randomize
Community

D

o7
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Presenter
Presentation Notes
Walk through general features emphasizing:
Cluster randomization – Community is ISU, Schools clustered within Community
Balance, no missing or mistimed obs, unequal # clusters between groups ok, equal sample size within cluster
No t-v covar – treatment stays constant over time
Unstructured covar for obs within cluster; Unstructured or AR(1) or LEAR for RM



PNC Trial: Study Design Checklist

1. What Is the study design goal?

a. Solving for power or sample size
Power

c. Type | error rate
0.05

Colorado School of UF gg;}}{}mg;gtcomes & Policy
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Presentation Notes




PNC Trial: Study Design Checklist

2. What is the sampling scheme?

a. How many groups?
2 treatment groups

b. What are the covariates?
None

c. Is clustering present?
Yes; one level

d. Are group sizes equal or unequal?
Yes, with 10 communities per group

Colorado School of UF gg;}}{}mg;gtcomes & Policy
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Presentation Notes




PNC Trial: Study Design Checklist

3. What responses are measured?

a. What are the response variables?
Alcohol use behavior scale

b. Are repeated measures present?
Yes, at 6", 7th and 8" grades

4. What is the primary hypothesis of

Interest?
Time Trend by Treatment Interaction

Colorado School of UF gg;}}{}mg;gtcomes & Policy



PNC Trial: Study Design Checklist

5. What are the means?

Mean difference is 0.25 reduction In
self reported alcohol use in treatment
group vs. control
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Presenter
Presentation Notes
Scale of 0 to 1


PNC Trial: Study Design Checklist

6. What Is the variance structure?

a. What are the sources of correlation in
the study design?
- Clustering (one level), with clusters
of size 10 (# children/cluster)

- Repeated Measures, 3 occasions, 1
year apart
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PNC Trial: Study Design Checklist

6. What is the variance structure?

b. What is the pattern of variabllity for
each source of correlation?

—Variance: 0.09

—Intraclass correlation for community:
0.01 (p.)

—Correlation for responses 1 year
apart: 0.3 (p,)

—Correlation decays slowly over time
with decay rate of 0.3 (9)
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 Mixed Model (MM): Clustered and Repeated Measures Data

— Common Hypothesis Tests in the Linear MM (LMM)
— The LMM as a General Linear Multivariate Model

e (Going with the Flow (Diagram)
— Two Real World Examples

— Towards a Simple and Valid Power or Sample Size Analysis
 Missing Data

« Summary and Segue to Software Solution: GLIMMPSE
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Missing Data Adjustments

« Some useful crude approximations (Catellier
and Muller, 2000):

— Complete data power is an upper bound

— Power for N = (100% - % missing) x # ISUs
appears conservative, requires assuming data
are Missing at Random

e Work is in progress to identify better
approximations
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 Mixed Model (MM): Clustered and Repeated Measures Data

— Common Hypothesis Tests in the Linear MM (LMM)

— The LMM as a General Linear Multivariate Model

e (Going with the Flow (Diagram)
— Two Real World Examples

— Towards a Simple and Valid Power or Sample Size Analysis
e Missing Data
« Summary and Segue to Software Solution: GLIMMPSE
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Summary ey

e Under widely applicable restrictions a LMM can be
expressed as a General Linear Multivariate Model for
which accurate power and sample size analysis is
available.

* Answers to a series of simple questions can completely
specify the inputs to a power analysis.

« Convenient adjustments appear to suffice for simple
missing data patterns.

« Bonus: FREE software is now available to implement
the methods - GLIMMPSE - next!
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Agenda

* Motivate the need for GLIMMPSE

e Introduce the GLIMMPSE software

e Present GLIMMPSE validation results

« Example 1: The Stress Inoculation Training (SIT) trial

 Example 2: The Project Northland Chicago (PNC) trial
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Motivate the need for GLIMMPSE
Introduce the GLIMMPSE software
- features
- matrix mode
- types of designs supported
Present GLIMMPSE validation results
Study design considerations
Example: Longitudinal study of desire for control and memories of pain
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results
Example: Multilevel and longitudinal study to reduce drinking and driving risk behaviors
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results in youth
References
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Agenda

- Motivate the need for GLIMMPSE

e Introduce the GLIMMPSE software

e Present GLIMMPSE validation results

« Example 1: The Stress Inoculation Training (SIT) trial

 Example 2: The Project Northland Chicago (PNC) trial
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Motivate the need for GLIMMPSE
Introduce the GLIMMPSE software
- features
- matrix mode
- types of designs supported
Present GLIMMPSE validation results
Study design considerations
Example: Longitudinal study of desire for control and memories of pain
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results
Example: Multilevel and longitudinal study to reduce drinking and driving risk behaviors
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results in youth
References
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 Power and sample size calculation is critical for
ethical study design.

e Known results are underutilized.

e Our goal: provide a user-friendly tool for
calculating power and sample size.
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Agenda

* Motivate the need for GLIMMPSE

 Introduce the GLIMMPSE software

e Present GLIMMPSE validation results

« Example 1: The Stress Inoculation Training (SIT) trial

 Example 2: The Project Northland Chicago (PNC) trial
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Introduce the GLIMMPSE software
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- matrix mode
- types of designs supported
Present GLIMMPSE validation results
Study design considerations
Example: Longitudinal study of desire for control and memories of pain
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results
Example: Multilevel and longitudinal study to reduce drinking and driving risk behaviors
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results in youth
References
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What is GLIMMPSE? Bt

« GLIMMPSE is an online tool for calculating
power and sample size for the general linear
multivariate model (GLMM) and for a broad
class of general linear mixed models (LMM)

e http://glimmpse.samplesizeshop.com/

o http://glimmpsebeta.samplesizeshop.com/
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Based on the original POWERLIB program, a SAS/IML module (published in JSS)
Powerlib developed by Keith Muller and coauthors over past 30 years
The website is available on the business card included with the program
Citations for powerlib and related products on provided in the references section of the handout

http://glimmpse.samplesizeshop.com/
http://glimmpsebeta.samplesizeshop.com/
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GLIMMPSE Development Team
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e Sarah Kreidler, Tech Lead
« Vijay Chander Akula, Software Engineer
o Uttara Sakhadeo, Software Engineer

 Manual Preparation:
— Zacchary Coker-Dukowitz
— Brandy Ringham
— Yi Guo
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 Free
* Requires no programming expertise

 Built with industry standard Java technology
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Web browsers familiar, available on most PC’s
Unlike statistical packages such as SAS or R, does not need programming expertise
Built on 
Free and cross-platform
Flexible, scalable framework
Encapsulation of power calculation code
Allows for future expansion 
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GLIMMPSE Features S

 Web-based

* Free and open-source

« Designed with an intuitive wizard input style
* Able to produce power curves

* Able to export power results

e Able to save study designs for later use
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Wizard input style: allows you to enter information in any order
Results can be exported in form that can be loaded into most statistical packages (SAS, R)
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Supported Study Designs
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e Cross-sectional studies

« Longitudinal designs

« Multilevel designs

e Designs with a baseline covariate
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Observational studies and Randomized controlled trials
Cross sectional: one or multi-sample ANOVA, ANCOVA, factorial
Longitudinal: singly, doubly or triply repeated measures
- Allows unequally spaced observations
Multilevel: clustering, reversible mixed models
Baseline covariate: allows controlling for a single Gaussian covariate
Currently requires normally distributed outcomes.
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Two Interaction Modes
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Start Your Study Design

Welcome to GLIMMPSE. The GLIMMPSE software calculates powerand sample size for study designs with normally distributed
outcomes. Select one of the options below to begin your power or sample size calculation.

suided Study Design Matrix Study Design Upload a Study Design
Build common study designs Directly enter the matrices for the If you have previously saved a study
including ANOWA, ANCOWA, and general linear model. This mode is design from GLIMMPSE, you may
regression with guidance from the designed for users with advanced upload it here. Click browse to select
study design wizard. This mode is statistical training. your study design file.

designed for applied researchers
including physicians, nurses, and
other investigators.
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Related Publications S

« GLMM with fixed predictors
— Muller and Peterson, 1984
— Muller and Barton, 1989
— Muller et al., 1992
— Muller et al., 2007

 GLMM with fixed predictors and a Gaussian
covariate

— Glueck and Muller, 2003
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GLIMMPSE Limitations S

e Binary or count data

* Very high dimensional, low sample size designs
« Certain classes of mixed models
« Adjustments for missing data

 Sample size based on confidence interval width
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Agenda

* Motivate the need for GLIMMPSE

e Introduce the GLIMMPSE software

* Present GLIMMPSE validation results

« Example 1: The Stress Inoculation Training (SIT) trial

 Example 2: The Project Northland Chicago (PNC) trial
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Motivate the need for GLIMMPSE
Introduce the GLIMMPSE software
- features
- matrix mode
- types of designs supported
Present GLIMMPSE validation results
Study design considerations
Example: Longitudinal study of desire for control and memories of pain
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results
Example: Multilevel and longitudinal study to reduce drinking and driving risk behaviors
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results in youth
References
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Validation
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e Validated against published results and
simulation

e Full validation results are available online

http.//[samplesizeshop.com/documentation/glimmpse-
validation-results/
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Published results include glueck & muller tables and POWERLIB software

http://samplesizeshop.com/documentation/glimmpse-validation-results/
http://samplesizeshop.com/documentation/glimmpse-validation-results/
http://samplesizeshop.com/documentation/glimmpse-validation-results/
http://samplesizeshop.com/documentation/glimmpse-validation-results/
http://samplesizeshop.com/documentation/glimmpse-validation-results/
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e 6 decimal accuracy against published results
« 2 decimal accuracy against simulation

* Worst case error in 15t decimal for complex
multivariate designs
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Mixed Model Power Analysis By Example
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Agenda

* Motivate the need for GLIMMPSE

e Introduce the GLIMMPSE software

e Present GLIMMPSE validation results

« Example 1. The Stress Inoculation Training (SIT) trial

 Example 2: The Project Northland Chicago (PNC) trial
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Motivate the need for GLIMMPSE
Introduce the GLIMMPSE software
- features
- matrix mode
- types of designs supported
Present GLIMMPSE validation results
Study design considerations
Example: Longitudinal study of desire for control and memories of pain
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results
Example: Multilevel and longitudinal study to reduce drinking and driving risk behaviors
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results in youth
References
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The Stress Inoculation Training (SIT) Trial

CIRLAMDIC), FUCRIDA

Month O Month 6 Month 12
Treatment Data Data Data

Randomize
Participant

Placebo Month O Month 6 Month 12
Data Data Data
88
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Balance, no missing or mistimed obs, unequal group sizes ok
No t-v covar – treatment stays constant over time
Unstructured covariance or AR(1) or LEAR?
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The SIT Trial: Checklist S

1. What is the study design goal?

a. Solving for sample size

b. Desired power 0.9

c. Type |l error rate 0.01

89
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ISU: Does the study design include clustering?
Fixed: Are participants categorized into subgroups such as treated vs. placebo? Male vs. female?
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The SIT Trial: Checklist
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2. What Is the sampling scheme?

a. 2 treatment groups, 4 coping styles
b. No covariates
c. No clustering

d. Equal group sizes
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The SIT Trial: Checklist
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3. What responses are measured?

a. Response variable: memory of pain

b. Repeated measures at O, 6, and 12 months
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Comparing the trajectory over time between the two treatment groups.
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The SIT Trial: Checklist

4. What Is the primary hypothesis of interest?

Time trend by treatment interaction

j P —
3 .

2 } E— S
1 t“.—\.

0

Month O Month 6 Month 12 92
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The SIT Trial: Checklist

5. What are the means?
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Treated, “high need for and low feelings of
control” group with mean 1.2 points lower than
corresponding untreated group at month 12.
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The SIT Trial: Checklist

6. What is the variance structure?

a. Correlation due to repeated measures
 Variance in memory of pain: 0.96 points
o Correlation 6 months apart: 0.5

b. EXpect correlation to decay slowly over time
e Correlation 12 months apart: 0.4

94

UF Health Outcomes & Policy

College of Medicine

Colorado School of



APA
ANMUAL
COMYEMTION

ALKGGT 2-5 2012
CRLAMDCY, FUORIDA

Sample Size with GLIMMPSE

Start Your Study Design

Select one of the options below to begin your power or sample size estimate.

Guided Study Design Matrix Study Design Upload a Study Design
Build common study designs Directly enter the matrices for the If you have previcusly saved a study
including ANOWVA, ANCOVA, and general linear model. This mode is design from GLIMMPSE, you may
regression with guidance from the designed for users with advanced upload it here. Click browse to select
study design wizard. This mode is statistical training. wour study design file.

designed for more applied
researchers including physicians,
nurses, and other principal
investigators.

Browse_

Select guided mode .
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Sample Size with GLIMMPSE
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I Start
& Solving For
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Sampling Unit
Responses
Hypothesis
Means

Variability

Options
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Introduction

The GLIMMPSE wizard will guide you through several steps to calculate power or
sample size.

Use the forward and back arrows to navigate through the wizard. You may save your
work at any time by clicking the "5ave Design" link at the lower right of the screen.
The "Cancel" link, also at the lower right of the screen, allows you to cancel your
current work and begin a new study design. The help manual may be accessed by
clicking the "Help" link.

(General steps for a power analysis are listed on the left hand side of the screen. We
will ask you to specify:

s The Type | error rate

* The independent and dependent variables

* The primary study hypothesis of interest

+ Choices for group means

+ Choices for standard deviations and correlations for study outcomes
* The statistical test and additional display options

Click the forward arrow to begin.

L + Help ,EI Save Design ® cancel
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Sample Size with GLIMMPSE

Czllenylziz | Introduction
The GLIMMPSE wizard will guide you through several steps to calculate power or
Start sample size.
& Solving For Use the forward and back arrows to navigate through the wizard. You may save your

work at any time by clicking the "5ave Design" link at the lower right of the screen.
The "Cancel" link, also at the lower right of the screen, allows you to cancel your
Sampling Unit current work and begin a new study design. The help manual may be accessed by
clicking the "Help" link.

& Type | Emor

Responses
. (General steps for a power analysis are listed on the left hand side of the screen. We
Hypothesis will ask you to specify:
feans e The Type | error rate
Variability + The independent and dependent variables
_ ' * The primary study hypothesis of interest
Options s Choices for group means
+ Choices for standard deviations and correlations for study outcomes

Do statis] ast and additional display options

Navigate using forward
and back arrows

« b . Help '3 SaveDesign % Cancel
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Sample Size with GLIMMPSE
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Czfengfzyiz | Introduction

The GLIMMPSE wizard will guide you through several steps to calculate power or
Start sample size.

& Solving For jate through the wizard. You may save your

...0r navigate by clicking e e
in the |eﬁ: navigation bar f the screen, allows you to cancel your

& Type | Emor

Sampling Unit in. The help manual may be accessed by
Responses
Hvoothesi (General steps for a power analysis are listed on the left hand side of the screen. We
YPOINESIS will ask you to specify:
Jeans e The Type | error rate
Variability + The independent and dependent variables
_ * The primary study hypothesis of interest
Options s Choices for group means
+ Choices for standard deviations and correlations for study outcomes
* The statistical test and additional display options
Click the forward arrow to begin.
« b . Help '3 SaveDesign % Cancel
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Sample Size with GLIMMPSE

Czllenylziz | Introduction
The GLIMMPSE wizard will guide you through several steps to calculate power or
Start sample size.
& Solving For Use the forward and back arrows to navigate through the wizard. You may save your

work at any time by clicking the "5ave Design" link at the lower right of the screen.
The "Cancel" link, also at the lower right of the screen, allows you to cancel your
Sampling Unit current work and begin a new study design. The help manual may be accessed by
clicking the "Help" link.

& Type | Emor

Responses
Hvoothesi (General steps for a power analysis are listed on the left hand side of the screen. We
ypothesis will ask you to specify:
veans e The Type | error rate
Variability + The independent and dependent variable He|p1 SaV61 and Cancel
| eIl tools are located at the
Options s Choices for group means

bottom right

» Choices for standard deviations and corré
* The statistical test and additional display options

Click the forward arrow to begin.

« b . Help '3 SaveDesign % Cancel
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Solving for Sample Size
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Would you like to solve for power or sample size?

To begin your calculation, please indicate whether you would like to solve for power
or total sample size.

If you have a rough idea of the number of research participants you will be able to
recruit, then solving for power may be more beneficial.

If you have fewer restrictions on recruitment and would like to ensure a well-powered
study, then solving for sample size is likely to be more useful.

) Power

@ Total Sample Size

100

Colorado School of UF Health Outcomes & Policy

College of Medicine



Presenter
Presentation Notes
FIX SCREENSHOT SELECT RADIO BUTTON


APA
ANMUAL
COMYEMTION

Entering the Desired Power
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Power Values

Enter the desired power values in the list box below. Power values are numbers
between 0 and 1. Higher values correspond to a greater likelihood of rejecting the
null hypothesis. Common values are 0.8 or 0.9, although 0.9 or higher is usually

preferred.

Type each value into the list box and click "Add". To remove an item, highlight the
value and click the "Delete"” buftton.

Power Values: | | Add || Delete |

0.9
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Entering the Type | Error Rate
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Type | Error

A Type | error occurs when a scientist declares a difference when none is actually
present. The Type | error rate is the probability of a Type | error occurring, and is

often referred to as a. Type | error rates range from 0 to 1. The most commaonly used
values are 0.01, 0.05, and 0.1.

Enter each Type | error value into the text box and click "Add". You may enter up to 5
values. To remove a value, select the value in the list box and click the "Delete”
button.

Type | Emor Values.:| | Add || Delete |

0.01 I
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Defining Study Groups
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Study Groups

Describe the predictors which assign independent sampling units into groups, such
as gender or treatment. If the study includes only one group, select the "One group”
button. If the study includes multiple groups, select the " Multiple groups” button.

) One group
@ Multiple groups
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In the table below, specify the fixed predictors. The choice of study design

determines the values of fixed predictors (such as drug dose or gender). A commaon
example of a fixed predictor is treatment group, for which the independent sampling
unit is randomized to a placebo or an active drug group.

To enter fixed predictors:

1. Enter the name of each predictor in the left text box and click "Add". For

example, one might enter "treatment”

as a predictor.

2. Select the predictor from the left text box to display the current list of values
associated with the predictor. To add a new value, enter the value in the
"Category” text box and click "Add". For example, one could select
"treatment”, then add the values "drug" and "placebo.”

Each predictor should have at least two values.

Predictor Category

| Add || Delete | |

Delete

treatment

coping style

high need and high feeling
high need and low feeling
low need and high feeling
low need and low feeling
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Relative Group Sizes

Specify whether the study subgroups are of equal or unequal size.

For equal group sizes, select a "1" in the drop-down list next to each study
subgroup. This is the default study design.

For unequal group sizes, specify the ratio of the group sizes. For example, consider
a design with an active drug group and a placebo group. If twice as many study
participants receive the placebo, a value of "2" would be selected for the placebo
group, and a value of "1" would be selected for the active drug group.

Relative

Group Size treatment coping style

1 SIT high need and high feeling
1 SIT high need and low feeling
1 SIT low need and high feeling
1 ST low need and low feeling

placebo high need and high feeling
placebo high need and low feeling

placebo low need and high feeling

Bl B B B B B E]E]

placebo low need and low feeling

College of Medicine
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Relative
treatment coping style
Group Size S
1 =1 high need and high feeling
1 -

Modify the relative size
using the dropdown lists
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Response Variables

Enter the response variables in the table below. For example, in a study
investigating cholesterol-lowering medication, the response variable could be HDL,
LDL, and total cholesterol.

Mote that repeated measurement information will be addressed on the next screen.

Response 1'.."ariat1l\c-::5:| | Add || Delete |

memaory of pain
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Repeated Measures

Repeated measures are present when a response variable is measured on each
research paricipant on fwo or more occasions or under two or more conditions.

If the study includes repeated measurements, click “Add repeated measures” and
follow the prompts. The text entered in the "Units" text box indicates the dimension
over which measures were taken (ex. time, days, locations, etc.). The choice of
"Type" indicates whether the repeated measures are numeric (ex. time), ordinal (ex.
1st, 2nd, 3rd), or categorical (ex. arm, leg, hand).

You may specify up to 3 levels of repeated measures.

Add Repeated Measures
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Remove Repeated Measures

LInits time

Type Mumeric E

Mumber of Measurements 3

Spacing 1 2 3

Feset to Equal Spacing
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Hypotheses

The list below shows the hypotheses which are available for thi

design. Select the hypothesis which most closely resembles y@S £ igh|ighted tab indicates

hypothesis. Trends within an interaction hypothesis are specifis : :
tab. This hypothesis will be used to determine power for your s the L hypOtheSIS

The tab highlighted in "white" indicates the currently selected hypg
information about the type of hypothesis, click the magnifying gl4

Grand mean Main Effect Trend Interaction

] & & ]

Select two or maore predictors to include in the interaction hypothesis. To test for a
trend in a given factor, click the Edit Trend link and select an appropriate trend.

Between Participant Factors

V| treatment Edit trend : None

= coping style
Within Participant Factors

Wltime Edit trend - All polynomial trends 110
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) None

() Change from baseline

@ All polynomial trends

) Linear trend

() Quadratic trend

NS
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Entering Means

Means

The table below shows the mean values for each outcome within each study
subgroup. The study subgroups are listed along the left hand side of the table, and
the outcomes are listed across the top.

Enter the mean values you expect to observe for each outcome within each study
subgroup. The table should contain at least one value that is non-zero. Also, at least
two subgroups should have means which differ by a scientifically meaningful

amount.

treatment coping style

SIT high need and high feeling
SIT high need and low feeling
SIT low need and high feeling
SIT low need and low feeling

placebo high need and high feeling

placebo high need and low feeling

placebo low need and high feeling

placebo low need and low feeling

memory of pain

0

14

0

=1

0
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Select the time (location, etc.) from the list(s) below. This will allow you to edit the means at the selected time (location,

etc).

time IEIE’

Colorado School of
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Select the time (location, etc.) from the list(s) below.
etc.).

Enter means at
different times
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treatment coping style memory of pain
SIT high need and high feeling 0
SIT high need and low feeling | -1 21

SIT low need and high feelig

SIT low need and Ig

Clinically meaningful
difference .
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Flexible Means

Power and sample size results will change depending on the mean values specified
on the previous screen. It is not possible to know exact values for the means until the
experiment is observed. To account for the uncertainty, it is commaon to calculate
power for the mean values as specified, the mean values divided by 2, and the
mean values multiplied by 2.

[ ¥es, include power calculations for the mean values as entered, the mean values divided by 2, and the mean values
multiplied by 2.
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Entering Variability

Variability and Correlation within an Individual Research Participant

For a given research participant, responses vary across response variables and
across repeated measurements . The amount of variability can dramatically impact
power and sample size. Click on each of the tabs below to describe the varibility

you expect to observe for the response variables and each within-particpant factor.

Tabs represent each

Structured Correlation: The Linear Exponentiis it " .
(LEAR, Simpson et al., 2010) source” of correlation

The LEAR model describes correlation which monotonely decreases with
distance between repeated measurements. The model has two correlation
parameters, the base correlation and the decay rate. The base correlation
describes the correlation between measurements taken 1 unit apart. The decay
rate describes the rate of decrease in the base correlation as the distance or
time between repeated measurements increases. Our experience with biological
and behavioral data lead us to suggest using decay values between 0.05 and 0.5.

time Responses

Base Correlaticn

]

Decay Rate

]

time,1 fime2 time,3

time,1 1 0 0
time,2 0 1 0
time, 3 0 0 1
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Entering Variability

Variability and Correlation within an Individual Research Participant

For a given research participant, responses vary across response variables and
across repeated measurements . The amount of variability can dramatically impact
power and sample size. Click on each of the tabs below to describe the varibility
you expect to observe for the response variables and each within-particpant factor.

time Responses

Structured Correlation: The Linear Exponential Auto-Regressive Model
(LEAR, Simpson et al., 2010)

The LEAR model describes correlation which monotonely decreases with
distance between repeated measurements. The model has two correlation
parameters, the base correlation and the decay rate. The base correlation
describes the correlation between measurements taken 1 unit apart. The decay
rate describes the rate of decrease in the base correlation as the distance or
time between repeated measurements increases. Our experience with biological
and behavioral data lead us to suggest using decay values between 0.05 and 0.5.

Base Correlaticn

]

Use unstructured

Decay Rate -

correlation view

time,1 1 0 0
time,2 0 1 0
time, 3 0 0 1
Unstructured correlation
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time Responses

Enter the correlations you expect to observe among the repeated

measurements.

time,1 time,2 time,3
time,1 1 05 0.4
time, 2 05 1 05

time, 3 0.4 05 1

................................................................ %
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time Responses

Enter the standard deviation you expect to observe for each response. Note that
GLIMMPSE currently assumes that the standard deviation is constant across
repeated measurements.

memaory of pain {I.QE.|
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Flexible Variability

On the previous screens, you entered standard deviations and correlations.
GLIMMPSE has used these values to calculate a covariance matrix which
describes the overall variability.

Changes in variability can dramatically affect power and sample size results. It is not
possible to know the variability until the experiment is observed. To account for this
uncertainty, it is common to calculate power or sample size for alternative values for
variability.

By clicking the box below, GLIMMPSE will calculate power using the calculated
covariance matrix, the covariance matrix divided by 2, and the covanance matrix

multiplied by 2.
[V Yes, include power for the covariance matrix, the covariance matrix divided by 2, and the covariance matrix multiplied by
2.
120
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Statistical Tests

Select the statistical tests to include in your calculations. For study designs with a
single outcome, power is the same regardless of the test selected.

Note that only the Hotelling-Lawley Trace and the Univariate Approach to Repeated
Measures are supported for designs which include a baseline covariate.

"] Pillai-Bartlett Trace

"] wilks Likelihood Ratio

| Univariate Approach to Repeated Measures with Box Correction

[”] Univariate Approach to Repeated Measures with Geisser-Greenhouse Correction
("] Univariate Approach to Repeated Measures with Huynh-Feldt Correction

(] Univariate Approach to Repeated Measures, uncomrected
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Additional Options

e Confidence intervals for power

e Power curves
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Obtaining Results

« When a complete study design has been
entered, the calculate button will highlight

* Click the calculate button to obtain your results

123
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Power Results

Actual Total Beta Sigma Nominal Power
Test  power ;:p'e Scale SEEIE Alpha  Lower  Method
HLT 0.9017 600 1.0000 1.0000 0.0100 0.9000 CONDITIONAL
HLT 0.9124 212 1.0000 0.5000 0.0100 0.9000 CONDITIONAL
HLT 09035 1200 10000 2 0000 0.0100 09000 CONDITIOMAL
Save to CSW

» View Matrices

Minimum total sample size

to achieve 0.90 power o
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Summary for Manuscript

Participants were categorized by coping style, and
randomized to receive either the SIT intervention or
placebo. Sample size was calculated assuming a
Type | error rate of 0.01, and a standard deviation of
0.98 for pain scores. Correlation between repeated
pain scores was assumed to be 0.5 for
measurements 6 months apart, and 0.4 for
measurements 12 months apart. To achieve 0.90
power for detecting a time by treatment interaction
of 1.2 points using the Hotelling-Lawley trace test, a
total sample size of 600 participants was required.
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Agenda

* Motivate the need for GLIMMPSE

e Introduce the GLIMMPSE software

e Present GLIMMPSE validation results

« Example 1: The Stress Inoculation Training (SIT) trial

« Example 2: The Project Northland Chicago (PNC) trial
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Motivate the need for GLIMMPSE
Introduce the GLIMMPSE software
- features
- matrix mode
- types of designs supported
Present GLIMMPSE validation results
Study design considerations
Example: Longitudinal study of desire for control and memories of pain
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results
Example: Multilevel and longitudinal study to reduce drinking and driving risk behaviors
-- background on study
-- study design
---- factors (between / within) (picture)
---- multi-levely stuff, repeated measury stuff (with pictures)
-- inputs for power/sample size
-- calculate power/sample size
-- interpret results in youth
References
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Recruit 22
Communities

Community Community
1 seo e 22

| ww wr
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6" Grade Data H 7" Grade Data H 8" Grade Data <

Randomize
Community

D
6" Grade Data H 7" Grade Data H 8" Grade Data
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I
The PNC Trial: Checklist S

1. What is the study design goal?

a. Solving for power

c. Type | error rate is 0.05
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The PNC Trial: Checklist

2. What is the sampling scheme?

a. 2 treatment groups

b. No covariates

c. Clustering by community

d. Equal treatment group sizes

e. 3,4,....10 communities
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3. What responses are measured?

a. Response variable: alcohol behavior scale

b. 3 repeated measures in 6", 7, and 8™ grade

131
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The PNC Trial: Checklist

4. What Is the primary hypothesis of interest?

Time trend by treatment interaction

0.8
0.6
;\<‘

0.4 — —+-Home program
-=-Delayed control

0.2

O I I ]
6th grade  7th grade  8th grade 132
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5. What are the means?

Clinically meaningful difference is 0.25
reduction in alcohol use In treatment group In
8th grade.
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The PNC Trial: Checklist

6. What is the variance structure?

CRLAMDCY, FUORIDA

a. Correlation due to clustering and repeated measures
e Cluster size: 10
« Standard deviation of alcohol behavior scale: 0.3

b. Patterns of variability

e Clustering
—  Compound symmetry
— ICC:0.01
« Repeated Measures:
—  Correlation 1 year apart: 0.3
—  Decay rate: 0.3
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Start Your Study Design

Select one of the options below to begin your power or sample size estimate.

Guided Study Design Matrix Study Design Upload a Study Design
Build common study designs Directly enter the matrices for the If you have previcusly saved a study
including ANOWVA, ANCOVA, and general linear model. This mode is design from GLIMMPSE, you may
regression with guidance from the designed for users with advanced upload it here. Click browse to select
study design wizard. This mode is statistical training. wour study design file.

designed for more applied
researchers including physicians,
nurses, and other principal
investigators.

Browse_

Select guided mode 135
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Would you like to solve for power or sample size?

To begin your calculation, please indicate whether you would like to solve for power
or total sample size.

If you have a rough idea of the number of research participants you will be able to
recruit, then solving for power may be more beneficial.

If you have fewer restrictions on recruitment and would like to ensure a well-powered
study, then solving for sample size is likely to be more useful.

19: Power

) Total Sample Size

136

Colorado School of UF Health Outcomes & Policy

College of Medicine




APA
ANMUAL
COMYEMTION

Entering the Type | Error Rate

ALKGGT 2-5 2012

CRLAMDCY, FUORIDA

Type | Error

A Type | error occurs when a scientist declares a difference when none is actually
present. The Type | error rate is the probability of a Type | error occurring, and is
often referred to as a. Type | error rates range from 0 to 1. The most commonly used
values are 0.01, 0.05, and 0.1.

Enter each Type | error value into the text box and click "Add". You may enter up to 5
values. To remove a value, select the value in the list box and click the "Delete”
button.

Type | Ermor 1Iu"alll.1~9-,s.:| | Add || Delete |

0.05 it
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FPredictor Category
| Add || Delete | Delete
“ home based program i

delayed program control
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Defining Clustering

Clustering

In a clustered design, the independent sampling unit is a cluster, such as a
community, school, or classroom. Observations within a cluster are correlated. The
labels for observations within a cluster must be exchangeable. For example, child
"id" within classroom can be reassigned arbitrarily. In contrast, observations across
time cannot be reassigned and should not be considered clustered observations.
Clustering, or repeated measures, or a combination, creates a multilevel design.
The common correlation between any pair of cluster members is termed the
intraclass correlation or intracluster correlation.

To include clustering in the study, click "Add clustering” and follow the prompts. Use
the "Remove clustering” button to remove clustering information.

Add clustering

Colorado School of UF gg;}}{}mg;gtcomes & Policy
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Femove clustering

Cluster label community

Mumber of obsenvations or sub-clusters
within each cluster of this type

Intra-cluster correlation 0.0

Add subgroup Eemove subgroup
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Relative

treatment
Group S5ize
1 * | home based program
1 ¥ | delayed program control
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Size of the Smallest Group

Enter the number of independent sampling units (participants, clusters) in the
smallest group in the study. If your group sizes are equal, the value is the same for all

agroups. You may enter multiple values for the smallest group size in order to
consider a range of total sample sizes.

Enter one or more sample sizes in the text box below and click "Add". To remove a
sample size from the list, highlight it and click the "Delete" button.

Size of the Smallest Group: | Add | | Delete |

(| »

{5 B s g
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Response Variables

Enter the response variables in the table below. For example, in a study

investigating cholesterol-lowering medication, the response variable could be HDL,
LDL, and total cholesterol.

MNote that repeated measurement information will be addressed on the next screen.

Response Uariabl&s:l | Add || Delete |

alcohol behavior scale it
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Femove Repeated Measures

Lnits grade

Type Mumeric EI

Mumber of Measurements 3

Spacing 1 2 3

Feset to Equal Spacing
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Grand mean A Main Effect A Trend A Interaction A

=elect two or more predictors to include in the interaction hypothesis. To test for a
trend in a given factor, click the Edit Trend link and select an appropriate trend.

Between Participant Factors

¥ treatment Edit trend : None

Within Participant Factors

[Vl grade Edit trend : All polynomial trends
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treatment alcohol behavior scale

home based program -0.25

delayed program control E

Select the time (location, etc.) from the list(s) below. This will
etc.).

grade FE[
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Flexible Means

Power and sample size results will change depending on the mean values specified
on the previous screen. It is not possible to know exact values for the means until the
experiment is observed. To account for the uncertainty, it is common to calculate
power for the mean values as specified, the mean values divided by 2, and the
mean values multiplied by 2.

[]Yes, include power calculations for the mean values as entered, the mean values divided by 2, and the mean values
multiplied by 2.
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Entering Variability

grade Responses

Structured Correlation: The Linear Exponential Auto-Regressive Model
(LEAR, Simpson et al., 2010)

The LEAR model describes correlation which monotonely decreases with
distance between repeated measurements. The model has two correlation
parameters, the base correlation and the decay rate. The base correlation
describes the correlation between measurements taken 1 unit apart. The decay
rate describes the rate of decrease in the base correlation as the distance or
time between repeated measurements increases. Our experience with biological
and behavioral data lead us to suggest using decay values between 0.05 and 0.5.

Base Correlation -, 0.3

Decay Rate 0.3

grade,1 grade,2 grade,3
grade,1 1.0 0.3 0.20905:
grade,2 0.3 1.0 0.3

grade,3 0.20905: 0.3 1.0
‘Unstructured correlation’
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grade Responses

Enter the standard deviation you expect to observe for each response. Note that
GLIMMPSE currently assumes that the standard deviation is constant across
repeated measurements.

alcohol behavior scale | 0.3
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Flexible Variability

On the previous screens, you entered standard deviations and correlations.
GLIMMPSE has used these values to calculate a covariance matrix which
describes the overall variability.

Changes in variability can dramatically affect power and sample size results. It is not
possible to know the vaniability until the experiment is observed. To account for this
uncertainty, it 1is commaon to calculate power or sample size for alternative values for
variability.

By clicking the box below, GLIMMPSE will calculate power using the calculated
covariance matrix, the covariance matrix divided by 2, and the covariance matrix
multiplied by 2.

"1 ¥es, include power for the covariance matrix, the covariance matrix divided by 2, and the covariance matrix multiplied by
2.

150

Colorado School of UF Health Outcomes & Policy

College of Medicine



Presenter
Presentation Notes
As with means, if a user is uncertain about the standard deviation and correlation information available, GLIMMPSE allows the user to test half and twice the variability.  This will provide a reasonable range of power or sample size values


APA
ANMUAL
COMYEMTION

Selecting a Test

ALKGUGT 2-5 3012
CRLAMDCY, FUORIDA

Statistical Tests

Select the statistical tests to include in your calculations. For study designs with a
single outcome, power is the same regardless of the test selected.

Note that only the Hotelling-Lawley Trace and the Univariate Approach to Repeated
Measures are supported for designs which include a baseline covariate.

"] Pillai-Bartlett Trace

"] wilks Likelihood Ratio

| Univariate Approach to Repeated Measures with Box Correction

[”] Univariate Approach to Repeated Measures with Geisser-Greenhouse Correction
("] Univariate Approach to Repeated Measures with Huynh-Feldt Correction

(] Univariate Approach to Repeated Measures, uncomrected
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Adding a Power Curve

Power Curve Options

You may optionally create a power curve image for your results by unchecking this
checkbox. Then select the values you would like to display on the power curve by
selecting the appropriate options below.

[]1 do not want to create a pOWEr CUrve.
1. Select the quantity to display on the horizontal axis of the power curve (the vertical axis will display the power value).

ITDtEl Sample Size IEI
2. Add data series to the plot. Select values for each variable below. Click add to include sample size values matching

these criteria as a data series on the plot. To remove a data series, highlight it in the list box and click "Remove data

series”.
Regression Coefficient Scale Factor ITE
Variability Scale Factor ITE
Statistical Test | Hotelling-Lawley Trace | |
Type | Ermor ID_DE- j
Data Series Label FPower by Total M
| Add || Delete |
Power by Total M. Test=Hotelling-Lawley Trace Regr. Scale=1 Var. Scale=1 Alpha=0.05 )
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Power Results

Actual Total Beta Sigma MNominal Power
Test | power ;:P'E Scale 5::33 AlPha  bower  Method
HLT 0.1538 6 10000 10000 00500  0.1538 CONDITIONAL
HLT 0.2359 g 10000 10000 00500  0.2359 CONDITIONAL
HLT 0.5237 10 10000 10000 00500 05237 CONDITIONAL
HLT 0.6800 12 10000 10000 00500  0.6800 CONDITIONAL
HLT 0.7955 14 10000 10000 00500  0.7955 CONDITIONAL
HLT 0.8746 16 10000 10000 00500 08746 CONDITIONAL
HLT 0.9256 18 1.0000  1.0000 0.0500  0.0256 CONDITIONAL
HLT 0.9572 20 10000 1.0000 00500  0.9572 CONDITIONAL
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Power Curve
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Summary for Manuscript

Ten communities were randomized to receive either the
home based intervention or delayed intervention. Ten
students were recruited from each community. The
Intracluster correlation within community was assumed
to be 0.01. Correlation between repeated alcohol
behavior scores within a student was assumed to be 0.3
for measures taken one year apart, with gradual decay
over time. Power was calculated for a time by treatment
Interaction using the Hotelling-Lawley trace test. For a
Type | error rate of 0.05, and an assumed standard
deviation of 0.3 for alcohol behavior scores, the study
had 0.98 power to detect a difference of 0.25 in a time by
treatment interaction.
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GLIMMPSE for Power and Sample Size

ALKGUGT 2-5 3012
CRLAMDCY, FUORIDA

Summary

e Power and sample size calculations are a critical part of
study design

e Answers to basic guestions about the study design can
lead investigators to an appropriate sample size calculation

« GLIMMPSE is a free, web-based tool to aid in calculating
power or sample size for a variety of multilevel and
longitudinal designs
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