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1. Find the maximum likelihood estimates of the parameters of 
the bivariate Gaussian distribution of test scores for the cases. 

 

2. Use the maximum likelihood estimates and the sampling 
fractions in each partition to calculate weighted estimates. 

Bias Correction Algorithm 

23 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

1. Find the maximum likelihood estimates of the parameters of 
the bivariate Gaussian distribution of test scores for the cases. 

Bias Correction Algorithm 

24 

 

 
 

(Nath, 1971) Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

1. Find the maximum likelihood estimates of the parameters of 
the bivariate Gaussian distribution of test scores for the cases. 

Bias Correction Algorithm 

25 

 

 
 

Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 

(Nath, 1971) 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

1. Find the maximum likelihood estimates of the parameters of 
the bivariate Gaussian distribution of test scores for the cases. 

Bias Correction Algorithm 

26 

 

 
 

Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 

(Nath, 1971) 

μ1 
 

μ2 
 

σ2
1 

 

σ2
2 

 

ρ 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

1. Find the maximum likelihood estimates of the parameters of 
the bivariate Gaussian distribution of test scores for the cases. 

Bias Correction Algorithm 

27 

 

 
 

1 

2 

3 

4 
Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 

(Nath, 1971) 

μ1 
 

μ2 
 

σ2
1 

 

σ2
2 

 

ρ 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

1. Find the maximum likelihood estimates of the parameters of 
the bivariate Gaussian distribution of test scores for the cases. 

Bias Correction Algorithm 

28 

 

 
 

1 

2 

3 

4 
Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 

(Nath, 1971) 

μ1 
 

μ2 
 

σ2
1 

 

σ2
2 

 

ρ 



2. Use the maximum likelihood estimates and the sampling 
fractions in each partition to calculate weighted estimates. 

Bias Correction Algorithm 

29 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

2. Use the maximum likelihood estimates and the sampling 
fractions in each partition to calculate weighted estimates. 

Bias Correction Algorithm 

30 

1 

2 

3 

4 
Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

2. Use the maximum likelihood estimates and the sampling 
fractions in each partition to calculate weighted estimates. 

Bias Correction Algorithm 

31 

1 

2 

3 

4 
Screening Test 2 Score 

Sc
re

en
in

g 
Te

st
 1

 S
co

re
 



Weighted Estimates 

32 



Weighted Estimates 

33 



Weighted Estimates 

34 



Weighted Estimates 

35 



Weighted Estimates 

36 (Equation 3.3.1, p. 81, Kish, 1995; Proposition 5.2, p. 348, Ross, 2009) 



Weighted Estimates 

37 (Equation 3.3.1, p. 81, Kish, 1995; Proposition 5.2, p. 348, Ross, 2009) 



Weighted Estimates 

38 (Equation 3.3.1, p. 81, Kish, 1995; Proposition 5.2, p. 348, Ross, 2009) 



Weighted Estimates 

39 (Equation 3.3.1, p. 81, Kish, 1995; Proposition 5.2, p. 348, Ross, 2009) 



Design for Simulation Studies 

40 

Define 14 
parameters 

Generate 
bivariate 

Gaussian data 

Observed 
analysis 

Complete 
analysis 

Bias correction 
algorithm 

Corrected 
Analysis 

Deduce 
observed 

disease status 



Design for Simulation Studies 

41 

Define 14 
parameters 

Generate 
bivariate 

Gaussian data 

Observed 
analysis 

Complete 
analysis 

Bias correction 
algorithm 

Corrected 
Analysis 

Deduce 
observed 

disease status 



Design for Simulation Studies 

42 

Define 14 
parameters 

Generate 
bivariate 

Gaussian data 

Observed 
analysis 

Complete 
analysis 

Bias correction 
algorithm 

Corrected 
Analysis 

Deduce 
observed 

disease status 



Design for Simulation Studies 

43 

Define 14 
parameters 

Generate 
bivariate 

Gaussian data 

Observed 
analysis 

Complete 
analysis 

Bias correction 
algorithm 

Corrected 
Analysis 

Deduce 
observed 

disease status 



Design for Simulation Studies 

44 

Define 14 
parameters 

Generate 
bivariate 

Gaussian data 

Observed 
analysis 

Complete 
analysis 

Bias correction 
algorithm 

Corrected 
Analysis 

Deduce 
observed 

disease status 



Design for Simulation Studies 

45 

Define 14 
parameters 

Generate 
bivariate 

Gaussian data 

Observed 
analysis 

Complete 
analysis 

Bias correction 
algorithm 

Corrected 
Analysis 

Deduce 
observed 

disease status 



Evaluation of the Method 

46 46 

Se
ns

iti
vi

ty
 

1 - Specificity 

46 



Evaluation of the Method 

47 47 

Type I Error Se
ns

iti
vi

ty
 

1 - Specificity 

47 



Evaluation of the Method 

48 48 

Se
ns

iti
vi

ty
 

1 - Specificity 

48 



Evaluation of the Method 

49 49 

Wrong 
Rejection 
Fraction 

Correct 
Rejection 
Fraction 

Se
ns

iti
vi

ty
 

1 - Specificity 

Power 



Disease Prevalence Simulation Study 

50 



Bias? Percent Identified 
( Test 1 / Test 2) 

Complete 
Type I Error 

Observed 
Type I Error 

Corrected 
Type I Error 

Yes 
15/50 0.01 0.89 0.36 
15/80 0.02 0.95 0.25 
50/80 0.01 0.23 0.12 

No 
15/15 0.01  0.02  0.23  
50/50 0.01  0.02  0.12  
80/80 0.02 0.02 0.18 

Percent Identified Simulation Study 

51 



Bias? Percent Identified 
( Test 1 / Test 2) 

Complete 
Type I Error 

Observed 
Type I Error 

Corrected 
Type I Error 

Yes 
15/50 0.01 0.89 0.36 
15/80 0.02 0.95 0.25 
50/80 0.01 0.23 0.12 

No 
15/15 0.01  0.02  0.23  
50/50 0.01  0.02  0.12  
80/80 0.02 0.02 0.18 

Percent Identified Simulation Study 

52 



Bias? Percent Identified 
( Test 1 / Test 2) 

Complete 
Type I Error 

Observed 
Type I Error 

Corrected 
Type I Error 

Yes 
15/50 0.01 0.89 0.36 
15/80 0.02 0.95 0.25 
50/80 0.01 0.23 0.12 

No 
15/15 0.01  0.02  0.23  
50/50 0.01  0.02  0.12  
80/80 0.02 0.02 0.18 

Percent Identified Simulation Study 

53 



• Study investigators should conduct a simulation of their study 
using both the standard analysis and the bias correction 
method. 

 

• Study investigators should choose the analysis plan that has a 
nominal Type I error rate and the highest power for the correct 
decision. 
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• Re-weighting, imputation, and Bayesian approaches have 
been proposed to reduce the effect of partial verification bias  

• Maximum likelihood methods and latent class models have 
been proposed to estimate diagnostic accuracy in the presence 
of imperfect reference standard bias  

• A method using general estimating equations can correct for 
missing disease status, but does not account for 
misclassification of disease status. 

• We have not found any methods that reduce the effect of 
paired screening trial bias. 
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